Generalized Priestley Quasi-Orders

نویسندگان

  • Guram Bezhanishvili
  • Ramon Jansana
چکیده

We introduce generalized Priestley quasi-orders and show that subalgebras of bounded distributive meet-semilattices are dually characterized by means of generalized Priestley quasi-orders. This generalizes the well-known characterization of subalgebras of bounded distributive lattices by means of Priestley quasiorders (Adams, Algebra Univers 3:216–228, 1973; Cignoli et al., Order 8(3):299– 315, 1991; Schmid, Order 19(1):11–34, 2002). We also introduce Vietoris families and prove that homomorphic images of bounded distributive meet-semilattices are dually characterized by Vietoris families. We show that this generalizes the wellknown characterization (Priestley, Proc Lond Math Soc 24(3):507–530, 1972) of homomorphic images of a bounded distributive lattice by means of closed subsets of its Priestley space. We also show how to modify the notions of generalized Priestley quasi-order and Vietoris family to obtain the dual characterizations of subalgebras and homomorphic images of bounded implicative semilattices, which generalize the well-known dual characterizations of subalgebras and homomorphic images of Heyting algebras (Esakia, Sov Math Dokl 15:147–151, 1974). The work of the first author was partially supported by the Georgian National Science Foundation grant GNSF/ST06/3-003. The work of the second author was partially supported by 2009SGR-1433 research grant from the funding agency AGAUR of the Generalitat de Catalunya and by the MTM2008-01139 research grant of the Spanish Ministry of Education and Science. G. Bezhanishvili (B) Department of Mathematical Sciences, New Mexico State University, Las Cruces NM 88003-8001, USA e-mail: [email protected] R. Jansana Departament de Lògica, Història i Filosofia de la Ciència, Universitat de Barcelona, Montalegre 6, 08001 Barcelona, Spain e-mail: [email protected] 202 Order (2011) 28:201–220

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Duality for Quasi Ordered Structures (i)

Recently, several authors extended Priestley duality for distributive lattices [9] to other classes of algebras, such as, e.g. distributive lattices with operators [7], MV -algebras [8], MTL and IMTL algebras [2]. In [5] necessary and sufficient conditions for a normally presented variety to be naturally dualizable, in the sense of [6], i.e. with respect to a discrete topology, have been provid...

متن کامل

Priestley Style Duality for Distributive Meet-semilattices

We generalize Priestley duality for distributive lattices to a duality for distributive meet-semilattices. On the one hand, our generalized Priestley spaces are easier to work with than Celani’s DS-spaces, and are similar to Hansoul’s Priestley structures. On the other hand, our generalized Priestley morphisms are similar to Celani’s meet-relations and are more general than Hansoul’s morphisms....

متن کامل

Distributive Lattices with a Generalized Implication: Topological Duality

In this paper we introduce the notion of generalized implication for lattices, as a binary function⇒ that maps every pair of elements of a lattice to an ideal. We prove that a bounded lattice A is distributive if and only if there exists a generalized implication ⇒ defined in A satisfying certain conditions, and we study the class of bounded distributive lattices A endowed with a generalized im...

متن کامل

The Priestley Separation Axiom for Scattered Spaces

Let R be a quasi-order on a compact Hausdorff topological space X. We prove that if X is scattered, then R satisfies the Priestley separation axiom if and only if R is closed in the product space X × X. Furthermore, if X is not scattered, then we show that there is a quasi-order on X that is closed in X × X but does not satisfy the Priestley separation axiom. As a result, we obtain a new charac...

متن کامل

The descriptive set-theoretical complexity of the embeddability relation on models of large size

We show that if κ is a weakly compact cardinal then the embeddability relation on (generalized) trees of size κ is invariantly universal. This means that for every analytic quasi-order on the generalized Cantor space 2 there is an Lκ+κsentence φ such that the embeddability relation on its models of size κ, which are all trees, is Borel bireducible (and, in fact, classwise Borel isomorphic) to R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Order

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2011